
29
FILE DECOMPRESSION
AND INSTALLATION
When operating systems were simpler, and the typical user was interested in computers as a hobby, file installation
was fairly easy. Most applications simply came with a document that told users to copy all the necessary files to their
hard disk, and that was all there was to it.

Todays’ Windows 95 environment is considerably more complicated, and the typical user is more interested in
accomplishing tasks than in understanding how the computer works. Satisfying these users made application
installation programs significantly more difficult to develop. An installation program now must deal with such
things as compressed installation files and multiple versions of system libraries. The Win32 API contains functions
that allow your application to deal with these situations. In addition, it also contains many functions that help your
application work with compressed files. You can use these functions in any situation, but they are used most often in
conjunction with application installation packages.

File Installation Overview
Consider, as an example, the problem posed by the existence of multiple versions of the common dialog library
COMMDLG.DLL. This library provides common dialog boxes for applications. Imagine that a computer user has
installed a new application package that uses the latest version of this library. Everything is working well. The user
then purchases a copy of your application that the local software store has had on its shelf for several months. Your
application also uses the COMMDLG.DLL library, but since it was packaged some months ago, it includes a rather old
copy of this library. If your installation program simply copies the COMMDLG.DLL library to the users system, your
application will work fine, but the original application that required the newer version of the library will no longer
function correctly. Your installation
program has caused a problem for the user by unintentionally replacing a newer version of the COMMDLG.DLL library
with an older version.

Installing the Proper Version
Because of the problem outlined in the previous section, application installation programs should not blindly copy
files to the user’s system. Instead, an application should determine if a version of the file already exists, and whether
or not the existing file is newer than the file about to be installed. Windows provides the VerFindFile() and
VerInstallFile() functions just for this purpose. VerFindFile() determines where an application should install a given
file. It checks the system for existing copies of the file, and returns information that is then used by VerInstallFile().

Listing 29-1 shows a function that uses the VerFindFile() and VerInstallFile() functions to determine where to
install a shared file and to install it.

Listing 29-1. Installing with Version Checking
.
.
// Install a shared file with version checking.
//...
InstallSharedFile(“COMMDLG.DLL”, “C:\\MYAPP”);
.
.
.

DWORD InstallSharedFile(LPCTSTR szFileToInstall, LPCTSTR szDirectory)
{
 TCHAR sWinDir[_MAX_PATH]; // Holds the windows directory.
 TCHAR sCurDir[_MAX_PATH]; // Returns path to preexisting file.
 TCHAR sDestDir[_MAX_PATH]; // Returns recommended path for file.
 TCHAR sTmpFile[_MAX_PATH]; // Buffer for temporary file name.
 UINT uCurLen = MAX_PATH; // Holds the length of sCurDir.
 UINT uDestLen = MAX_PATH; // Holds the length of sDestDir.
 UINT uTmpLen = MAX_PATH; // Holds the length of sTmpFile.
 DWORD dwStatus; // Return value from function.

 // Get the windows directory.
 //...........................
 GetWindowsDirectory(sWinDir, sizeof(sWinDir));

 // Find out if this file exists on the system already and where.
 //..
 dwStatus = VerFindFile(VFFF_ISSHAREDFILE, szFileToFind, sWinDir, szAppDir,
 sCurDir, &uCurLen, sDestDir, &uDestLen);

 if (dwStatus == VFF_FILEINUSE)
 MessageBox(“This file is in use, close all applications and try again.”, “Install”, MB_OK |
MB_ICONSTOP);
 else
 dwStatus = VerInstallFile(0, szFileToFind, szFileToFind, “A:\\”,
 sDestDir, sCurDir, sTmpFile, uTmpLen);
 return(dwStatus);
}

The first parameter to VerFindFile() indicates whether or not the file is private to this application. In the
example above, VFF_ISSHAREDFILE indicates that the given file is shared among different Windows applications.
After the call to VerFindFile(), the buffer sDestDir will contain the location for the new file that Windows
recommends. The buffer sCurDir will contain the location of any preexisting version of the file. The return value
from VerFindFile() can be one of the values shown in Table 29-4 in the description of this function.

After having called VerFindFile(), and assuming that no errors were encountered, the application can use
VerInstallFile() to actually install the file. VerInstallFile() will copy the new file into a temporary file,
decompressing it if necessary. It will then check the version information of any preexisting file. If VerInstallFile()
finds no problems, the new file will be installed in place of the original file. VerInstallFile() returns a bit mask
containing one or more of the values shown in Table 29-3 indicating the success or failure of the installation. Refer to
the description of VerInstallFile() at the end of this chapter for more information.

The Version Resource
A version information resource may be embedded within executable files, libraries, and controls. Create this resource
just as you do other windows resources, such as bitmaps and menus – with a resource editor. If an error occurs while
installing files, the application can retrieve the version information resource to display useful error messages to the
user. An application can retrieve the version information resource for any file by using the GetFileVersionInfoSize(),
GetFileVersionInfo(), and VerQueryValue() functions. Listing 29-2 shows an example of a version resource.

Listing 29-2. Version Resource
1 VERSIONINFO
 FILEVERSION 1,0,0,1
 PRODUCTVERSION 1,0,0,1
 FILEFLAGSMASK 0x3fL
#ifdef _DEBUG
 FILEFLAGS 0x1L
#else
 FILEFLAGS 0x0L
#endif
 FILEOS 0x4L
 FILETYPE 0x1L
 FILESUBTYPE 0x0L
BEGIN
 BLOCK "StringFileInfo"
 BEGIN
 BLOCK "040904b0"
 BEGIN
 VALUE "Comments", "This is a sample version information header.\0"
 VALUE "CompanyName", "Waite Group Press\0"
 VALUE "FileDescription", "Sample Application\0"
 VALUE "FileVersion", "1.01\0"
 VALUE "InternalName", "VerQuery\0"
 VALUE "LegalCopyright", "Copyright \251 1995\0"
 VALUE "OriginalFilename", "VerQuery.RC\0"
 VALUE "ProductName", "Version Query Example\0"
 VALUE "ProductVersion", "1.0\0"
 END
 END
 BLOCK "VarFileInfo"
 BEGIN
 VALUE "Translation", 0x409, 1200
 END
END

Once you have retrieved the version information resource, you can use VerQueryInfo() to obtain specific values. Refer
to the description of VerQueryValue() for details on retrieving information from the version information resource.

File Decompression
The version support functions already discussed can automatically handle compressed files. Sometimes, it is useful for
an application to be able to decompress files independent of the version control functions. Windows provides a number
of functions for this purpose.

If an application is decompressing a file, it can use the LZCopy() function to accomplish this. Before you can use
the LZCopy() function, you must open the source and destination files with LZOpenFile(). This function is similar to
the OpenFile() function, and returns file handles that are used by LZCopy(), LZRead(), and LZSeek(). If a file is already
opened with the OpenFile() function, use that file handle with the LZInit() function to obtain an equivelent handle as
returned by the LZOpenFile() function. Finally, after the files have been copied, the application uses the LZClose()
function to close the file handles.

A compressed file may have embedded within it the name of the uncompressed file. An application can use the
GetExpandedName() function to retrieve this name. If the compressed file does not have the original file name
embedded within it, then this function simply returns the name of the compressed file.

If your application requires a large read-only file, you can save space on the user’s system by keeping the file
compressed. The Win32 API provides the LZRead() and LZSeek() functions to allow you to read data from a compressed
file as if it were uncompressed. The LZRead() and LZSeek() are functionally similar to the ReadFile() and
SetFilePointer() functions.

The Win32 API does not provide functions to compress files. Compressing files is done with the COMPRESS.EXE
utility, an MS-DOS utility that compresses files using a scheme that is compatible with the functions shown in this
chapter.

File Decompression and Installation Function Summary

Table 29-1 summarizes the file decompression and installation functions. A detailed description of each function
follows the table.

Table 29-1. File Decompression and Installation Function Summary

Function Purpose

GetExpandedName Retrieves the original file name of a compressed file. The file must have been compressed using the /r switch.
GetFileVersionInfo Obtains the version information resource from a Win32 executable file.
GetFileVersionInfoSize Returns the size of the version information resource in a Win32 executable file.
LZClose Closes the file opened with LZOpenFile().
LZCopy Copies a file. If the source file was compressed using the Microsoft compression utility, then the destination file will be decompressed.

Otherwise, a direct copy is made.
LZInit Initializes the decompression library for multiple file operations.
LZOpenFile Opens a file for use with other decompression functions.
LZRead Reads from a file that was opened with LZOpenFile(). If the file is compressed, LZRead() decompresses the data before placing it in

the buffer.
LZSeek Moves the read pointer for a file opened with LZOpenFile(). If the file is compressed, the read pointer is moved based on an

expanded image of the data.
VerFindFile Determines where a file should be installed, searching for existing versions of the file.
VerInstallFile Installs a file, decompressing as needed.
VerQueryValue Obtains specific version information from the buffer returned by GetFileVersionInfo().

GETEXPANDEDNAME WIN32S WINDOWS 95 WINDOWSNT
Description GetExpandedName() retrieves the original name of a compressed file, if the file was compressed

using the Microsoft compression program, COMPRESS.EXE, and the /r switch was specified.

Syntax INT GetExpandedName(LPTSTR lpszSourceFile, LPTSTR lpszOriginalName)

Parameters

lpszSourceFile LPTSTR: A pointer to a null terminated string that contains the file name of the compressed file.

lpszOriginalName LPTSTR: A pointer to a buffer that receives the original name of the uncompressed file. If the
compressed file was not compressed with the /r switch, then the source file name will be copied to
this buffer.

Returns INT: If successful, a value of 1. Otherwise, LZERROR_BADVALUE.

Include File lzexpand.h

Example The following example retrieves the original file name of the compressed file COMP.DO_.

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_TEST :
 {
 TCHAR szLongName[MAX_PATH];

 if (GetExpandedName("COMP.DO_", szLongName) != LZERROR_BADVALUE)
 MessageBox(hWnd, "Expanded File name.", szLongName, MB_OK);
 }
 break;
 .
 .
 .

GETFILEV ERSIONINFO WIN32S WINDOWS 95 WINDOWS NT
Description GetFileVersionInfo() retrieves the version information resource from a Win32 executable file,

library, or control. An application must include VERSION.LIB to reference this function.
GetFileVersionInfoSize() obtains the size of the buffer needed to hold the version information
resource for any given file. After allocating an appropriate buffer, the application can use
GetFileVersionInfo() to retrieve the version information resource.

Syntax BOOL GetFileVersionInfo(LPTSTR lpszFileName, DWORD dwReserved, DWORD dwBufferSize,
LPVOID lpBuffer)

Parameters

lpszFileName LPTSTR: A pointer to a buffer containing the name of the file from which the version
information is to be retrieved.

dwReserved DWORD: This parameter is ignored.

dwBufferSize DWORD: On entry, contains the size of the buffer pointed to by lpBuffer. On return, this
parameter contains the actual size of the buffer required to contain the version resource. If the
buffer is not large enough to contain the version resource, the resource is truncated to fit.

lpBuffer LPVOID: A pointer to a buffer that will contain the version resource.

Returns BOOL: TRUE if successful; otherwise, the return value is FALSE.

Include File winver.h

See Also GetFileVersionInfoSize(), VerQueryValue()

Example The following example uses GetFileVersionInfoSize() to retrieve the size of the version resource,
then uses GetFileVersionInfo() to retrieve the version information. The CompanyName,
FileVersion, and ProductName strings are then retrieved from the StringFileInfo section of the
version information. Refer to Listing 29-2 at the beginning of this chapter for the version
information in the resource file used with this example.

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
static HWND hList;

 switch(uMsg)
 {
 case WM_CREATE :
 hList = CreateWindowEx(WS_EX_CLIENTEDGE, "LISTBOX", "",
 LBS_STANDARD | WS_CHILD | WS_VISIBLE,
 0, 0, 10, 10, hWnd, (HMENU)101, hInst, NULL);
 break;

 case WM_SIZE :
 MoveWindow(hList, 0, 0, LOWORD(lParam), HIWORD(lParam), TRUE);
 break;

 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_TEST :
 {
 DWORD dwSize;
 DWORD dwReserved;
 LPVOID lpBuffer;

 dwSize = GetFileVersionInfoSize("GETVERIN.EXE", &dwReserved);

 lpBuffer = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwSize);

 if (lpBuffer &&
 GetFileVersionInfo("GETVERIN.EXE", 0, dwSize, lpBuffer))
 {
 LPTSTR lpStr;
 DWORD dwLength;

 // Retrieve version information.
 //..............................
 VerQueryValue(lpBuffer, "\\StringFileInfo\\040904b0\\CompanyName",
 &lpStr, &dwLength);
 SendMessage(hList, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)lpStr);

 VerQueryValue(lpBuffer, "\\StringFileInfo\\040904b0\\FileVersion",
 &lpStr, &dwLength);
 SendMessage(hList, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)lpStr);

 VerQueryValue(lpBuffer, "\\StringFileInfo\\040904b0\\ProductName",
 &lpStr, &dwLength);
 SendMessage(hList, LB_INSERTSTRING, (WPARAM)-1, (LPARAM)lpStr);
 }

 if (lpBuffer)
 HeapFree(GetProcessHeap(), 0, lpBuffer);
 }
 break;
 .
 .
 .

GETFILEV ERSIONINFOSIZE WIN32S WINDOWS 95 WINDOWS NT
Description GetFileVersionInfoSize() retrieves the size of the version information resource of the specified

file. This information allows an application to allocate a buffer of the appropriate size for use
with the GetFileVersionInfo() function. An application must include VERSION.LIB to reference
this function.

Syntax DWORD GetFileVersionInfoSize(LPTSTR lpszFileName, LPDWORD lpdwReserved)

Parameters

lpszFileName LPTSTR: A pointer to a buffer containing the name of a file. The size of the version information
resource within this file is returned.

lpdwReserved LPDWORD: A pointer to a DWORD value. This function sets the value of this DWORD to zero.

Returns DWORD: The size, in bytes, of the version information resource contained within the specified
file.

Include File winver.h

See Also GetFileVersionInfo(), VerQueryValue()

Example See GetFileVersionInfo() for an example of this function.

LZCLOSE WIN32S WINDOWS 95 WINDOWS NT
Description LZClose() closes the file handle that was obtained by using the LZOpenFile() function.

Syntax VOID LZClose(INT hFile)

Parameters

hFile INT: Identifies the file to be closed. This value was returned by a previous call to LZOpenFile().

Returns VOID: This function does not return a value.

Include File lzexpand.h

See Also LZOpenFile()

Example See LZCopy() for an example of this function.

LZCOPY W IN32S WINDOWS 95 WINDOWS NT
Description LZCopy() copies a source file to a destination file. If the source file is compressed, the destination

file will be decompressed.

Syntax LONG LZCopy(INT hSourceFile, INT hDestFile)

Parameters

hSourceFile INT: The handle identifying a file opened with the LZOpenFile() function. This file may be
compressed.

hDestFile INT: The handle identifying a file opened with the LZOpenFile() function. If the source file is a
compressed file, the destination file will be decompressed.

Returns LONG: If successful, the size, in bytes, of the destination file; otherwise, a value less than zero is
returned, which specifies an error condition. Table 29-2 gives specific error values.

Table 29-2. LZ Function Error Codes

Return Value Description

LZERROR_BADINHANDLE The parameter specified for hSourceFile was not valid.
LZERROR_BADOUTHANDLE The parameter specified for hDestFile was not valid.
LZERROR_BADVALUE One of the input parameters is not valid.
LZERROR_GLOBALLOC An error occurred allocating memory for the decompression process. There is currently a limit of 16 open compressed files.
LZERROR_GLOBLOCK An error occurred locking the memory used for the decompression buffer.
LZERROR_READ The source file could not be read. This could be due to specifying a corrupt compressed file.
LZERROR_WRITE There is insufficient space for the output file.

Include File lzexpand.h

See Also LZClose(), LZInit(), LZOpenFile()

Example This example copies the compressed file COMP.DO_ to an uncompressed file “Sample
Document.DOC” when the user presses the Test! menu item..

LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch(uMsg)
 {
 case WM_COMMAND :
 switch(LOWORD(wParam))
 {
 case IDM_TEST :
 {
 INT hSource;
 INT hDestination;
 LONG lRet;
 OFSTRUCT OfStruct;

 // Open the source and destination.
 //.................................
 hSource = LZOpenFile("COMP.DO_", &OfStruct, OF_READ);
 hDestination = LZOpenFile("Sample Document.DOC", &OfStruct, OF_CREATE);

 // Decompress the document.
 //.........................
 lRet = LZCopy(hSource, hDestination);

 // Close the files.
 //.................
 LZClose(hSource);
 LZClose(hDestination);

 if (lRet > 0)
 MessageBox(hWnd, "File copied.", lpszTitle, MB_OK | MB_ICONINFORMATION);
 else
 MessageBox(hWnd, "File NOT copied!", lpszTitle, MB_OK | MB_ICONASTERISK);
 }
 break;

 .
 .
 .

LZINIT WIN32S WINDOWS 95 WINDOWS NT
Description LZInit() converts a file handle obtained by the OpenFile() function into a file handle that can be

used with the various decompression functions. If the file is compressed, then LZInit() allocates
the appropriate buffers to allow decompression.

Syntax INT LZInit(INT hFile)

Parameters

hFile INT: The file handle of a file opened with OpenFile().

Returns INT: A new file handle that can be used with the file decompression library.

Include File lzexpand.h

See Also LZRead(), LZSeek(), LZOpenFile(), OpenFile()

Example The following code segment opens a file using the normal OpenFile() function. It then uses
LZInit() to convert the file handle into one usable by the decompression library, and performs a
read and a seek on the file with the LZSeek() and LZRead() functions.

HFILE hNormalFile;
OPENSTRUCT OpenStruct;
LONG SeekLocation;
INT hCompressedFile;

// First, open the file as a normal file.
//..
hNormalFile = OpenFile(lpszFileName, &OpenStruct, OF_READ);
.
.
.
// We have determined that this is a compressed file. Switch to the
// file decompression library routines.

// Convert handle to LZ handle and read data.
//...
hCompressedFile = LZInit(hNormalFile);
LZRead(hCompressedFile, &SeekLocation, sizeof(SeekLocation));
LZSeek(hCompressedFile, SeekLocation, 0);

LZOPENFILE WIN32S WINDOWS 95 WINDOWS NT
Description LZOpenFile() prepares files for use by other decompression functions, deletes files, and creates

new uncompressed files.

Syntax INT LZOpenFile(LPTSTR lpFileName, LPOFSTRUCT lpOpenStruct, WORD wStyle)

Parameters

lpFileName LPTSTR: A pointer to a buffer containing the name of the file to open.

lpOpenStruct LPOFSTRUCT: A pointer to an OFSTRUCT structure. This function will fill the values of the
OFSTRUCT structure the first time the file is opened. This structure then can be used by
subsequent calls to LZOpenFile(). Refer to the description of OpenFile() in Chapter 17 for more
information.

wStyle WORD: Specifies a bit mask of various actions. Refer to the description of OpenFile() in Chapter
17 for more information.

Returns INT: An integer value identifying the open file if successful. Otherwise, it returns a value less than
zero, specifying an error condition. Refer to Table 29-2 for possible return values.

Include File lzexpand.h

See Also LZClose(), LZCopyFile()

Example See the example of the LZCopy() function.

LZREAD WIN32S WINDOWS 95 WINDOWS NT
Description LZRead() reads data from a file opened with LZOpenFile() or LZInit(). From the point of view of

the application, this function is identical to a normal file read. LZRead() handles all required
decompression.

Syntax INT LZRead(INT hFile, LPTSTR lpBuffer, INT nByteCount)

Parameters

hFile INT: A file handle retrieved by using LZOpenFile() or LZInit().

lpBuffer LPTSTR: A pointer to the buffer where the data is to be placed.

nByteCount INT: Specifies the number of bytes to read. This value is in reference to uncompressed data.

Returns INT: If successful, the number of bytes actually read; otherwise, the return value is an error code.
Refer to Table 29-2 for possible error codes.

Include File lzexpand.h

See Also LZInit(), LZSeek()

Example LZInit() gives an example of this function.

LZSEEK WIN32S WINDOWS 95 WINDOWS NT
Description LZSeek() moves the read pointer of the specified file.

Syntax LONG LZSeek(INT hFile, LONG lOffset, INT iFrom)

Parameters

hFile INT: A file handle retieved by using LZOpenFile() or LZInit().

lOffset LONG: Specifies the distance, in bytes, that the read pointer is to be moved. This value is in
reference to uncompressed data. This value may be negative to move backward in the file.

iFrom INT: A flag specifying how the read pointer is to be moved. Refer to Table 29-3 for specific values
for this parameter.

Table 29-3. Valid Values for the lFrom Parameter of LZSeek()

Value Meaning

0 Moves the read pointer to the position indicated, starting at the beginning of the file.
1 Moves the read pointer the specified number of bytes from the current position.
2 Moves the read pointer the specified number of bytes from the end of the file.

Returns LONG: If successful, the new absolute position of the read pointer; otherwise, the return value is an
error code. Refer to Table 29-2 for possible error codes.

Include File lzexpand.h

See Also LZInit(), LZRead()

Example LZInit() gives an example of this function.

V ERFINDFILE WIN32S WINDOWS 95 WINDOWS NT
Description VerFindFile() recommends the proper location that an application should use when installing a

specific file. This recommendation is based on whether a version of the file already exists on the

user’s system. The values returned by this function should be used in a subsequent call to
VerInstallFile() to actually install the file. An application must include VERSION.LIB to
reference this function.

Syntax DWORD VerFindFile(DWORD dwFlags, LPTSTR szFileName, LPTSTR szWindowsDirectory,
LPTSTR szApplicationDirectory, LPTSTR szCurrentDirectory, LPDWORD lpdwCurrentLength,
LPTSTR szDestinationDirectory, LPDWORD lpdwDestinationLength)

Parameters

dwFlags DWORD: If this parameter is VFFF_ISSHAREDFILE, then the file is considered to be a shared
file, i.e. used by multiple applications. If this parameter is zero, then the file is considered to be
private to this application.

szFileName LPTSTR: A pointer to the name of the file. This should include only a file name and extension. It
should not include a drive letter or path.

szWindowsDirectory LPTSTR: A pointer to the name of the directory where Windows is running or will be run. You can
use the GetWindowsDirectory() function to obtain this value.

szApplicationDirectory LPTSTR: A pointer to the name of the directory where the application is being installed.

szCurrentDirectory LPTSTR: A pointer to a buffer where this function returns the directory if any existing version of
the file is located. If there is no existing version of the file, this buffer will contain a zero-length
string.

lpdwCurrentLength LPDWORD: A pointer to a DWORD value. On entry to this function, this DWORD should be set
to the length of the szCurrentDirectory buffer. On return from this function, this DWORD will
be set to the length of the string returned. If szCurrentDirectory is too small to contain the entire
path, then this parameter is set to the number of bytes required to hold the path name.

szDestinationDirectory LPTSTR: A pointer to a buffer where Windows will place the directory name of the location
that it recommends be used to install the file.

lpdwDestinationLength LPDWORD: A pointer to a DWORD value. On entry to this function, this value should be set
to the length of the szDestinationDirectory buffer. On return from this function, this value will
be set to the length of the string returned. If szDestinationDirectory is too small to contain the
entire path, then this parameter is set to the number of bytes required to hold the path name.

Returns DWORD: The return value is a bit mask indicating various results. It can be one or more of the
values shown in Table 29-4.

Table 29-4. VerFindFile() Return Flags.

Bit Value Description

VFF_CURNEDEST A previous version of the file exists, but is not in the recommended location.
VFF_FILEINUSE A previous version of the file exists, and is currently being used by Windows or another application. The file may not be deleted or

replaced.
VFF_BUFFTOOSMALL Either lpdwCurrentLength or lpdwDestinationLength specified that the respective buffer was too small to contain the entire path

name.

Include File winver.h

See Also VerInstallFile()

Example Refer to Listing 29-1 in the introduction of this chapter for an example of this function.

V ERINSTALLFILE WIN32S WINDOWS 95 WINDOWS NT
Description VerInstallFile() installs a specific file. The file is decompressed if necessary, and version

information is checked against any preexisting file. An application must include VERSION.LIB to
reference this function.

Syntax DWORD VerInstallFile(DWORD dwFlags, LPTSTR szSrcFileName, LPTSTR szDestFileName,
LPTSTR szSrcDirectory, LPTSTR szDestDirectory, LPTSTR szExistingDirectory, LPTSTR
szTempName, LPDWORD lpdwTempLength)

Parameters

dwFlags DWORD: Various flags that may be used to alter the operation of this function. Table 29-5 gives
valid values for this parameter.

Table 29-5. VerInstallFile()dwFlags.

Bitmask Meaning

VIFF_FORCEINSTALL Forces VerInstallFile() to install the new file regardless of any version or type mismatch with an existing file. If
VIFF_DONTDELETEOLD is not specified, and the previous version of the file exists in a different directory, it will be deleted. If the
previous version of the file exists in the destination directory specified, it will be overwritten regardless of the setting of
VIFF_DONTDELETEOLD.

VIFF_DONTDELETEOLD If a previous version of the file exists in a directory other than the recommended destination directory, using this flag will keep
VerInstallFile() from removing the old file.

szSrcFileName LPTSTR: The name of the file to be installed. This can only include the file name and extension.
No path or drive information should be included.

szDestFileName LPTSTR: The name this file should be given once installed. This can include only the file name
and extension. No path or drive information should be included. This parameter allows the file to
be renamed during the installation process.

szSrcDirectory LPTSTR: The drive and directory where the source file exists.

szDestDirectory LPTSTR: The drive and directory where the file is to be installed. This is usually the
szDestinationDirectory parameter of VerFindFile().

szExistingDirectory LPTSTR: The location where a preexisting version of the file can be found. This is usually the
szCurrentDirectory parameter of VerFindFile().

szTempName LPTSTR: A buffer where this function will store the temporary name used during the file-
installation process.

lpdwTempLength LPDWORD: The size of the szTempName buffer. On return, this parameter will indicate the actual
size of the szTempName string.

Returns DWORD: A bit mask that indicates various exception conditions during the installation process.
One or more of the values defined in Table 29-6 may be included.

Table 29-6. VerInstallFile() Return Codes.

Bit Mask Meaning

VIF_TEMPFILE Indicates that a temporary file has been left in the destination directory due to some installation error. Other bits will be set
indicating the specific error. An application should remove the temporary file when it is no longer needed.

VIF_MISMATCH The new file and the preexisting file differ in some manner.
VIF_SRCOLD The new file is older than the preexisting file.
VIF_DIFFLANG The new file and the preexisting file specify different language or code page values.
VIF_DIFFCODEPG The new file and the preexisting file specify different code page values.
VIF_DIFFTYPE The new file has a different type, sub-type, or operating system identifier than the preexisting file.
VIF_WRITEPROT The preexisting file has been write-protected.
VIF_FILEINUSE The preexisting file is currently in use by Windows.
VIF_OUTOFSPACE Insufficient disk space on the destination drive for the new file.
VIF_ACCESSVIOLATION Installation of the new file failed due to an access violation.

VIF_SHARINGVIOLATION Installation of the new file failed due to a sharing violation.
VIF_CANNOTCREATE The temporary file could not be created.
VIF_CANNOTDELETE The destination file could not be deleted.
VIF_CANNOTDELETECUR The destination file exists in a different directory, VIFF_DONTDELETEOLD was not specified, and the existing version of the file could

not be deleted.
VIF_CANNOTRENAME The preexisting file was deleted, but the temporary file could not be renamed.
VIF_OUTOFMEMORY There is not enough memory to complete the installation. This is generally caused by running out of memory while trying to

decompress a file.
VIF_CANNOTREADSRC The new file could not be read.
VIF_CANNOTREADDST The preexisting file could not be read, therefore no version information could be obtained.
VIF_BUFFTOOSMALL The temporary file name buffer is too small to contain the name of the temporary file.

Include File winver.h

See Also VerFindFile()

Example Refer to Listing 29-1 in the introduction of this chapter for an example of this function.

V ERQUERYV ALUE WIN32S WINDOWS 95 WINDOWS NT
Description VerQueryValue() retrieves specific information from the version information resource that was

obtained using GetFileVersionInfo(). An application must include VERSION.LIB to reference this
function.

Syntax BOOL VerQueryValue(LPVOID lpVerInfo, LPTSTR lpszKey, LPVOID lpvPointerToData, LPUINT
lpdwDataLength)

Parameters

lpVerInfo LPVOID: A pointer to the version information resource. This data is typically obtained by a call to
GetFileVersionInfo().

lpszKey LPTSTR: Identifies which version information value to return. Table 29-7 gives details.

lpvPointerToData LPVOID: A pointer to a buffer where this function will place a pointer to the requested version
information.

lpdwDataLength LPUINT: A pointer to a UINT that this function will set to the length of the data pointed to by
lpvPointerToData.

Table 29-7. Rules for the lpszKey Parameter of VerQueryValue()

String Form Description

\ Specifies the fixed version information. Using this key returns a pointer to a VS_FIXEDFILEINFO structure within the version
information resource. See the definition of the VS_FIXEDFILEINFO structure below.

\VarFileInfo\Translation Specifies the language/character set translation table. A pointer to the translation table is returned. An application will use the
information in this table to build the strings needed to access the language-specific information in the version information resource.
The translation table consists of an array of two WORD entries. The first word in each entry is the language ID, and the second word
in each entry is the character set.

\StringFileInfo\<LanguageAndCharacter set>\<String>
Specifies an entry in the language-specific section of the version information resource. The <LanguageAndCharacterSet> string
should be an Ascii string specifying the language ID and character set ID obtained from the language/character set translation table.
This must be specified as a hexadecimal string. The <String> string specifies which string to retrieve. The following pre-defined
strings may be used: CompanyName, FileDescription, FileVersion, InternalName, LegalCopyright, OriginalFilename, ProductName,
ProductVersion. As an example, the following string would retrieve the “Company Name” from language ID 1033 character set
1252: “\\StringFileInfo\\040904E4\\CompanyName”.

Returns BOOL: The return value will be TRUE if this function is successful; otherwise, the return value
will be FALSE.

Include File winver.h

See Also GetFileVersionInfo()

VS_FIXEDFILEINFO Definition
 typedef struct _VS_FIXEDFILEINFO
 {
 DWORD dwSignature;
 DWORD dwStrucVersion;
 DWORD dwFileVersionMS;
 DWORD dwFileVersionLS;
 DWORD dwProductVersionMS;
 DWORD dwProductVersionLS;
 DWORD dwFileFlagsMask;
 DWORD dwFileFlags;
 DWORD dwFileOS;
 DWORD dwFileType;
 DWORD dwFileSubtype;
 DWORD dwFileDateMS;
 DWORD dwFileDateLS;
 } VS_FIXEDFILEINFO;

dwSignature DWORD: This member contains the value 0xFEEFO4BD. This is used searching a file for the
VS_FIXEDFILEINFO structure.

dwStrucVersion DWORD: The binary version number of this structure. The high-order word of this member
contains the major version number, and the low-order word contains the minor version number.
This value must be greater than 0x00000029.

dwFileVersionMS DWORD: The most significant 32 bits of the file's binary version number. This member is used
with dwFileVersionLS to form a 64-bit value used for numeric comparisons.

dwFileVersionLS DWORD: The least significant 32 bits of the file's binary version number. This member is used
with dwFileVersionMS to form a 64-bit value used for numeric comparisons.

dwProductVersionMS

DWORD: The most significant 32 bits of the binary version number of the product with which
this file was distributed. This member is used with dwProductVersionLS to form a 64-bit value
used for numeric comparisons.

dwProductVersionLS

DWORD: The least significant 32 bits of the binary version number of the product with which
this file was distributed. This member is used with dwProductVersionMS to form a 64-bit value
used for numeric comparisons.

dwFileFlagsMask DWORD: A bitmask that specifies the valid bits in dwFileFlags member. A bit is set only if its
corresponding value was defined when the file was created.

dwFileFlags DWORD: A bitmask that specifies the Boolean attributes of the file. This member can include one
or more of the values listed in Table 29-8.

Table 29-8. VS_FIXEDFILEINFO dwFileFlags Values

Flag Description

VS_FF_DEBUG The file contains debugging information or is compiled with debugging features enabled.
VS_FF_INFOINFERRED The file's version structure was created dynamically. Some of the members in this structure may be empty or incorrect. This flag

should never be set in a file's VS_VERSION_INFO data.
VS_FF_PATCHED The file has been modified and is not identical to the original shipping file of the same version number.
VS_FF_PRERELEASE The file is a development version, not a commercially released product.
VS_FF_PRIVATEBUILD The file was not built using standard release procedures. If this flag is set, StringFileInfo should contain a PrivateBuild entry.

VS_FF_SPECIALBUILD The file was built by the original company using standard release procedures but is a variation of the normal file of the same version
number. If this flag is set, StringFileInfo should contain a SpecialBuild entry.

dwFileOS DWORD: The operating system for which this file was designed. This member can be one of the
values listed in Table 29-9.

Table 29-9. VS_FIXEDFILEINFO dwFileOS Values

Value Description

VOS_DOS The file was designed for MS-DOS.
VOS_DOS_WINDOWS16 The file was designed for 16-bit Windows running on MS-DOS.
VOS_DOS_WINDOWS32 The file was designed for Win32 API running on MS-DOS.
VOS_OS216 The file was designed for 16-bit OS/2.
VOS_OS216_PM16 The file was designed for 16-bit Presentation Manager running on 16-bit OS/2.
VOS_OS232 The file was designed for 32-bit OS/2.
VOS_OS232_PM32 The file was designed for 32-bit Presentation Manager running on 32-bit OS/2.
VOS_PM16 The file was designed for 16-bit Presentation Manager.
VOS_PM32 The file was designed for 32-bit Presentation Manager.
VOS_NT The file was designed for Windows NT.
VOS_NT_WINDOWS32 The file was designed for the Win32 API running on Windows NT.
VOS_UNKNOWN The operating system for which the file was designed is unknown to Windows.
VOS_WINDOWS16 The file was designed for 16-bit Windows.
VOS_WINDOWS32 The file was designed for the Win32 API.
dwFileType DWORD: The general type of file. This member can be one of the values listed in Table 29-10.

Other values may be defined an not listed in this table because they are reserved for future use by
Microsoft.

Table 29-10. VS_FIXEDFILEINFO dwFileType Values

Value Description

VFT_APP The file contains an application.
VFT_DLL The file contains a dynamic-link library (DLL).
VFT_DRV The file contains a device driver. If dwFileType is VFT_DRV, dwFileSubtype contains a more specific description of the driver.
VFT_FONT The file contains a font. If dwFileType is VFT_FONT, dwFileSubtype contains a more specific description of the font file.
VFT_STATIC_LIB The file contains a static-link library.
VFT_UNKNOWN The file type is unknown to Windows.
VFT_VXD The file contains a virtual device.
dwFileSubtype DWORD: The specific function of the file. Normally this member is set to zero except for values

of dwFileType VFT_DRV, VFT_FONT, and VFT_VXD. If dwFileType is VFT_DRV, dwFileSubtype
can be one of the values listed in Table 29-11. If dwFileType is VFT_FONT, dwFileSubtype can be
one of the values listed in Table 29-12. If dwFileType is VFT_VXD, dwFileSubtype contains the
virtual device identifier included in the virtual device control block. All dwFileSubtype values not
listed here are reserved for future use by Microsoft.

Table 29-11. VS_FIXEDFILEINFO dwFileSubtype Values for VFT_DRV Types

Value Description

VFT2_UNKNOWN The driver type is unknown by Windows.
VFT2_DRV_PRINTER The file contains a printer driver.
VFT2_DRV_KEYBOARD The file contains a keyboard driver.

VFT2_DRV_LANGUAGE The file contains a language driver.
VFT2_DRV_DISPLAY The file contains a display driver.
VFT2_DRV_MOUSE The file contains a mouse driver.
VFT2_DRV_NETWORK The file contains a network driver.
VFT2_DRV_SYSTEM The file contains a system driver.
VFT2_DRV_INSTALLABLE The file contains an installable driver.
VFT2_DRV_SOUND The file contains a sound driver.

Table 29-12. VS_FIXEDFILEINFO dwFileSubtype Values for VFT_FONT Types

Value Description

VFT2_UNKNOWN The font type is unknown by Windows.
VFT2_FONT_RASTER The file contains a raster font.
VFT2_FONT_VECTOR The file contains a vector font.
VFT2_FONT_TRUETYPE The file contains a TrueType font.
dwFileDateMS DWORD: The most significant 32 bits of the file's creation date and time stamp. This member is

used with dwFileDataLS member to form a 64-bit binary value.

dwFileDateLS DWORD: The least significant 32 bits of the file's creation date and time stamp. This member is
used with dwFileDataMS member to form a 64-bit binary value.

Example See GetFileVersionInfo() for an example of this function.

